Echinoids Classification Essay

Introduction to the Echinoidea

Left: A long-spined sea urchins on a coral reef at Contadora Island, off the Pacific Coast of Panama. Center: Unidentified sand dollar skeleton with spines removed. Right: Living heart urchin, Brissus laticarinatus, from the eastern coast of Thailand.

Echinoids are one of the more diverse and successful echinoderm groups today, including familiar echinoderms such as the sea urchins and sand dollars. The roe (egg mass) of some species, notably certain sea urchins, is eaten in some cultures, notably in Japanese sushi; as a result, certain echinoid species are commercially fished. The larval development of echinoids has also been studied extensively, and many discoveries in developmental biology have been made using echinoids. Echinoids also have a substantial fossil record.

In echinoids, the skeleton is almost always made up of tightly interlocking plates that form a rigid structure or test -- in contrast with the more flexible skeletal arrangements of starfish, brittle stars, and sea cucumbers. Test shapes range from nearly globular, as in some sea urchins, to highly flattened, as in sand dollars. Living echinoids are covered with spines, which are movable and anchored in sockets in the test. These spines may be long and prominent, as in typical sea urchins. In sand dollars and heart urchins, however, the spines are very short and form an almost felt-like covering. The mouth of most echinoids is provided with five hard teeth arranged in a circlet, forming an apparatus known as Aristotle's lantern.

Echinoids are classified by the symmetry of the test, the number and arrangement of plate rows making up the test, and the number and arrangement of respiratory pore rows called petals Traditionally, echinoids have been divided into two subgroups: regular echinoids, with nearly perfect pentameral (five-part) symmetry; and irregular echinoids with altered symmetry. Regular echinoids include the Cidaroida (pencil urchins) and Echinoida (sea urchins, including the long-spined sea urchin shown above left). The Clypeasteroida (sand dollars and sea biscuits, above center), the Spatangoida (heart urchins, including Brissus laticarinatus shown above right), and the Cassiduloida, a somewhat sand-dollar-like group whose members are rare today, make up the irregular echinoids.

Because most echinoids have rigid tests, their ability to fossilize is greater than that of more delicate echinoderms such as starfish, and they are common fossils in many deposits. The oldest echinoids, belonging to an extinct regular taxon called the Echinocystitoidea, appear in the fossil record in the late Ordovician. Cidaroids or pencil urchins appear in the Mississippian (Early Carboniferous) and were the only echinoids to survive the mass extinction at the Permo-Triassic boundary. Echinoids did not become particularly diverse until well after the Permo- Triassic mass extinction. True sea urchins first appear in the late Triassic, cassiduloids in the Jurassic, and spatangoids or heart urchins in the Cretaceous. Sand dollars, a common and diverse group today, do not even appear in the fossil record at all until the Paleocene.

More sea urchin information and pictures may be had at Animal Diversity Web: Echinoidea. The Sea Urchin Harvesters Association site and the TED Sea Urchin Fishery and Overfishing page offer various perspectives on the commercial sea urchin fishery.

  • Hyman, L. H. 1955. The Invertebrates. Volume IV; Echinodermata. McGraw-Hill, New York.
  • Kier, P. M. 1987. Class Echinoidea. Pp. 596-611. In: R. S. Boardman, A. H. Cheetham, and A. J. Rowell (eds.) Fossil Invertebrates. Blackwell Scientific, Palo Alto.

1. Darwin C. 1859. On the origin of species. London, UK: John Murray

2. Haeckel E. 1874. Anthropogenie oder Entwickelungsgeschichte des Menschen. Leipzig, Germany: Verlag von Wilhelm Engelmann

3. Bateson W. 1886. The ancestry of the Chordata. Q. J. Microsc. Sci.26, 535–571

4. Garstang W. 1928. The origin and evolution of larval forms. Rep. Br. Assoc. Adv. Sci. No, 1928, 77–98

5. Berrill NJ. 1955. The origin of the vertebrates. Oxford, UK: Oxford University Press

6. Jefferies RPS. 1986. The ancestry of the vertebrates. London, UK: British Museum Natural History

7. Schaeffer B. 1987. Deuterostome monophyly and phylogeny. Evol. Biol.21, 179–235. (doi:10.1007/978-1-4615-6986-2_8)

8. Gee H. 1996. Before the backbone: views on the origin of the vertebrates. London, UK: Chapman & Hall

9. Hall BK. 1999. Evolutionary developmental biology, 2nd edn. Berlin, Germany: Springer

10. Nielsen C. 1999. Origin of the chordate central nervous system—and the origin of chordates. Dev. Genes Evol.209, 198–205. (doi:10.1007/s004270050244) [PubMed]

11. Shimeld SM, Holland PW. 2000. Vertebrate innovations. Proc. Natl Acad. Sci. USA97, 4449–4452. (doi:10.1073/pnas.97.9.4449) [PMC free article][PubMed]

12. Cameron CB, Garey JR, Swalla BJ. 2000. Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc. Natl Acad. Sci. USA97, 4469–4474. (doi:10.1073/pnas.97.9.4469) [PMC free article][PubMed]

13. Satoh N. 2003. The ascidian tadpole larva: comparative molecular development and genomics. Nat. Rev. Genet.4, 285–295. (doi:10.1038/nrg1042) [PubMed]

14. Zeng L, Swalla BJ. 2005. Molecular phylogeny of the protochordates: chordate evolution. Can. J. Zool.83, 24–33. (doi:10.1139/z05-010)

15. Lacalli TC. 2005. Protochordate body plan and the evolutionary role of larvae: old controversies resolved?Can. J. Zool.83, 216–224. (doi:10.1139/z04-162)

16. Gerhart J. 2006. The deuterostome ancestor. J. Cell. Physiol.209, 677–685. (doi:10.1002/jcp.20803) [PubMed]

17. Brown FD, Prendergast A, Swalla BJ. 2008. Man is but a worm: chordate origins. Genesis46, 605–613. (doi:10.1002/dvg.20471) [PubMed]

18. Satoh N. 2008. An aboral-dorsalization hypothesis for chordate origin. Genesis46, 614–622. (doi:10.1002/dvg.20416) [PubMed]

19. Swalla BJ, Smith AB. 2008. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Phil. Trans. R. Soc. B363, 1557–1568. (doi:10.1098/rstb.2007.2246) [PMC free article][PubMed]

20. Nielsen C. 2012. Animal evolution: interrelationships of the living phyla, 3rd edn. New York, NY: Oxford University Press

21. Linnaeus C. 1766–1767. Systema naturae, 12th edn, vol. 1. Holmiae, Sweden: Salvius

22. Lamarck JB. 1794. Recherches sur les causes des principaux faits physiques. Paris, France: Maradan

23. Cuvier G. 1815. Mémoire sur les Ascidies et sur leur anatomie. Mem. Mus. Hist. Nat. Paris2, 10–39

24. Lamarck JB. 1816. Histoire naturelle des animaux sans vertebres, vol. III: Tuniciers Paris, France: Déterville

25. Yarrell W. 1836. A history of British fishes, vol. 2. London, UK: John Van Voorst

26. Kowalevsky A. 1866. Entwicklungsgeschichte der einfachen Ascidien. Mem. l'Acad. St. Petersbourg.Ser. 7, 10, 11–19

27. Kowalevsky A. 1867. Entwicklungsgeschichte des Amphioxus lanceolatus. Mem. l'Acad. St. Petersbourg.Ser. 7, 4, 1–17

28. Haeckel E. 1866. Generelle Morphologie der Organismen. Berlin, Germany: Verlag von Georg Reimer

29. Haeckel E. 1874. Die Gastraea-Theorie, die phylogenetische Classification des Thierreichs und die Homologie der Keimblatter. Jenaische Zischr Naturw8, 1–55

30. Haeckel E. 1894. Systematische Phylogenie. Berlin, Germany: Verlag von Georg Reimer

31. Lankester ER. 1877. Notes on the embryology and classification of the animal kingdom: comprising a revision of speculations relative to the origin and significance of germ layers. Q. J. Microsc. Sci.17, 399–454

32. Balfour FM. 1880. A treatise on comparative embryology. London, UK: Macmillan

33. Grobben K. 1908. Die systematische Einteilung des Tierreiches. Ver. Zool. Bot. Ges. Wien58, 491–511

34. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature387, 489–493. (doi:10.1038/387489a0) [PubMed]

35. Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud'homme B, de Rosa R. 2000. The new animal phylogeny: reliability and implications. Proc. Natl Acad. Sci. USA97, 4453–4456. (doi:10.1073/pnas.97.9.4453) [PMC free article][PubMed]

36. Dunn MP, et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature452, 745–749. (doi:10.1038/nature06614) [PubMed]

37. Philippe H, et al. 2009. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol.19, 706–712. (doi:10.1016/j.cub.2009.02.052) [PubMed]

38. Wada H, Satoh N. 1994. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc. Natl Acad. Sci. USA91, 1801–1804. (doi:10.1073/pnas.91.5.1801) [PMC free article][PubMed]

39. Halanych KM. 1995. The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Mol. Phylogenet. Evol.4, 72–76. (doi:10.1006/mpev.1995.1007) [PubMed]

40. Perseke M, Golombek A, Schlegel M, Struck TH. 2013. The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Mol. Phylogenet. Evol.66, 898–905. (doi:10.1016/j.ympev.2012.11.019) [PubMed]

41. Metchnikoff E. 1881. Über die systematische Stellung von Balanoglossus. Zool. Anz.4, 153–157

42. Jefferies RPS, et al. 1996. The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry. Acta Zoolog. (Stockholm)77, 101–122. (doi:10.1111/j.1463-6395.1996.tb01256.x)

43. Delsuc F, Brinkmann H, Chourrout D, Philippe H. 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature439, 965–968. (doi:10.1038/nature04336) [PubMed]

44. Bourlat SJ, et al. 2006. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature444, 85–88. (doi:10.1038/nature05241) [PubMed]

45. Putnam NH, et al. 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature453, 1064–1071. (doi:10.1038/nature06967) [PubMed]

46. Gorman AL, McReynolds JS, Barnes SN. 1971.


Leave a Reply

Your email address will not be published. Required fields are marked *